Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38646680

RESUMO

We present a novel bionanocatalyst fabricated by the adsorption-reduction of metal ions on a polyurethane/S-layer protein biotemplate. The bioinspired support was obtained by the adsorption of S-layer proteins (isolated from Lentilactobacillus kefiri) on polyurethane particles. Silver and platinum nanoparticles were well-loaded on the surface of the support after the combination with metallic salts and reduction with H2 at room temperature. Transmission electron microscopy analysis revealed the strawberry-like morphology of the bionanocatalysts with a particle size, dn, of 2.39 nm for platinum and 9.60 nm for silver. Both systems catalyzed the hydrogenation of p-nitrophenol to p-aminophenol with high efficiency in water at mild conditions in the presence of NaBH4. Three different amounts of bionanocatalyst were tested, and in all cases, conversions between 97 and 99% were observed. The catalysts displayed excellent recyclability over ten cycles, and no extensive damage in their nanostructure was noted after them. The bionanocatalysts were stable during their production, storage, and use, thanks to the fact that the biosupport provides an effective driving force in the formation and stabilization of the metallic nanoparticles. The successful bioinspired production strategy and the good catalytic ability of the systems are encouraging in the search for nontoxic, simple, clean, and eco-friendly procedures for the synthesis and exploitation of nanostructures.

2.
Biomater Sci ; 9(7): 2608-2619, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33595000

RESUMO

Photothermal therapy (PTT) is a noninvasive treatment for cancer relying on the incorporation of NIR-light absorbing nanomaterials into cells, which upon illumination release heat causing thermally induced cell death. We prove that irradiation of aqueous suspensions of poly(vinylpyrrolidone)-coated silver nanoplates (PVPAgNP) or PVPAgNP in HeLa cells with red or NIR lasers causes a sizeable photothermal effect, which in cells can be visualized with the temperature sensing fluorophore Rhodamine B (RhB) using spinning disk confocal fluorescence microscopy or fluorescence lifetime imaging. Upon red-light irradiation of cells that were incubated with both, RhB and PVPAgNP at concentrations with no adverse effects on cell viability, a substantial heat release is detected. Initiation of cell death by photothermal effect is observed by positive signals of fluorescent markers for early and late apoptosis. Surprisingly, a new nanomaterial-assisted cell killing mode is operating when PVPAgNP-loaded HeLa cells are excited with moderate powers of fs-pulsed NIR light. Small roundish areas are generated with bright and fast (<1 ns) decaying emission, which expand fast and destroy the whole cell in seconds. This characteristic emission is assigned to efficient optical breakdown initiation around the strongly absorbing PVPAgNP leading to plasma formation that spreads fast through the cell.


Assuntos
Terapia Fototérmica , Prata , Células HeLa , Humanos , Luz , Microscopia de Fluorescência
3.
Photochem Photobiol ; 94(6): 1159-1166, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29978491

RESUMO

Riboflavin (Rf) is an endogenous photosensitizer, which can participate in Type I and Type II processes. We have recently shown that the yield of the triplet excited states of Rf is enhanced in the presence of pectin-coated silver nanoparticles (Pec@AgNP) due to formation of a complex between Rf and Pec@AgNP (Rf-Pec@AgNP). Consequently, under aerobic conditions, the amounts of singlet molecular oxygen and superoxide radical anion generated are also larger in the presence of the nanoparticles. This result made us suspect that the nanoparticles could have a beneficial effect in Rf-based PDT. To prove this hypothesis, we here compared the photodamage in HeLa cells incubated with Rf in the presence and in the absence of Pec@AgNP applying several optical assays. We used fluorescence imaging of irradiated HeLa cells incubated with Annexin V and propidium iodide to evaluate the occurrence of apoptosis/necrosis, the reduction of the tetrazolium dye MTT to formazan and neutral red uptake to prove cell viability, as well as synchrotron infrared microscopy of single cells to evaluate possible structural changes of DNA and nuclear proteins. The enhanced photodamage observed in the presence of Pec@AgNP seems to indicate that Rf enters into the cells complexed with the nanoparticles.


Assuntos
Apoptose/efeitos dos fármacos , Nanopartículas Metálicas/química , Fármacos Fotossensibilizantes/farmacologia , Riboflavina/farmacologia , Prata/química , Apoptose/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Células HeLa , Humanos , Cinética , Luz , Nanopartículas Metálicas/ultraestrutura , Oxigênio/química , Oxigênio/metabolismo , Pectinas/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Riboflavina/química , Análise de Célula Única , Oxigênio Singlete/química , Oxigênio Singlete/metabolismo , Superóxidos/química , Superóxidos/metabolismo
4.
Nanoscale ; 9(25): 8647-8656, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28612865

RESUMO

Coating strategies of inorganic nanoparticles (NPs) can provide properties unavailable to the NP core alone, such as targeting, specific sensing, and increased biocompatibility. Non-covalent amphiphilic NP capping polymers function via hydrophobic interactions with surface ligands and are extensively used to transfer NPs to aqueous media. For applications of coated NPs as actuators (sensors, markers, or for drug delivery) in a complex environment, such as biological systems, it is important to achieve a deep understanding of the factors affecting coating stability and behavior. We have designed a system that tests the coating stability of amphiphilic polymers through a simple fluorescent readout using either polarity sensing ESIPT (excited state intramolecular proton transfer) dyes or NP FRET (Förster resonance energy transfer). The stability of the coating was determined in response to changes in polarity, pH and ionic strength in the medium. Using the ESIPT system we observed linear changes in signal up to ∼20-25% v/v of co-solvent addition, constituting a break point. Based on such data, we propose a model for coating instability and the important adjustable parameters, such as the electrical charge distribution. FRET data provided confirmatory evidence for the model. The ESIPT dyes and FRET based methods represent new, simple tools for testing NP coating stability in complex environments.

5.
Langmuir ; 30(7): 1820-6, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24479895

RESUMO

The self-assembly of thiomalic acid (TMA) on Au(111) and on preformed Au nanoparticles (AuNPs) protected by weak ligands has been studied by X-ray photoelectron spectroscopy (XPS) and electrochemical techniques. Results show that TMA is adsorbed on the Au(111) surface as thiolate species with a small amount of atomic sulfur (∼10%) and a surface coverage lower than that found for alkanethiols due to steric factors. The amount of atomic sulfur markedly increases when the TMA is adsorbed on AuNPs by the ligand exchange method. We propose that the atomic sulfur is produced as a consequence of C-S bond cleavage, a process that is more favorable at defective sites of the AuNPs surface. The bond scission is also assisted by the presence of the electron-withdrawing carboxy moiety in the α-position relative to the C-S bond. Moreover, the high local concentration of positively charged species increases the stability of the negatively charged leaving group, leading to a higher amount of coadsorbed atomic sulfur. Our results demonstrate that the terminal functionalities of thiols are conditioning factors in the final structure and composition of the adlayers.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Tiomalatos/química , Adsorção , Estrutura Molecular , Propriedades de Superfície
6.
J Am Chem Soc ; 135(8): 3208-17, 2013 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-23360378

RESUMO

A photomodulatable amphiphilic polymer has been synthesized with a backbone of poly[isobutylene-alt-maleic anhydride] and pendant dodecyl alkyl chains, Lucifer Yellow (LY) fluorescent probes, and diheteroarylethenes photochromic (PC) groups. The latter serve as reversible UV-activated FRET acceptors for the LY donors. We characterized the spectral and switching properties of the polymer in an organic solvent (CHCl(3)). In an aqueous medium the polymer forms polymersomes, constituting fluorescence probes ~75 nm in diameter. Self-assembly of the polymer on the surface of a quantum dot (QD) serving as a template creates a dual-color photoswitchable nanoparticle (psNP) with improved properties due to the increase in polymer density and efficiency of PC photoconversion. The psNP exhibits a second QD red emission band that functions as an internal standard requiring only a single excitation wavelength, and is much reduced in size (<20 nm diameter) compared to the polymersomes. The QD template also greatly increases the depth of modulation by photochromic FRET of the LY emission monitored by both steady-state and time-resolved (lifetime) fluorescence (from 20%→70%, and from 12%→55%, respectively).


Assuntos
Cor , Nanopartículas , Polímeros/química , Pontos Quânticos , Transferência Ressonante de Energia de Fluorescência , Cinética , Solventes/química , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...